Skip to Main Content

Temperature effect on the
maximum swimming speed of
jack mackerel Trachurus
japonicus through muscle
contraction monitoring

by Nofrizal Nofrizal

FILE

TIME SUBMITTED 19-MAY-2020 10:58PM (UTC+0700) WORD COUNT 5149
SUBMISSION ID 1327805154 CHARACTER COUNT 26546



1 Anim Behav Biometeorol (2020) 8:160-167

ISSN 2318-1265

Temperature effect on the maximum swimming speed of jack mackerel
Trachurus japonicus through muscle contraction monitoring

Nofrizal" = Farhan Ramdhani = Takafumi Arimoto

ORIGINAL ARTICLE

L))

Check for
updates

[Flofrizal (Corresponding author) » F Ramdhani

Faculty of Fisheries and Marine Science, Riau University,
Indonesia, Kampus Bina Widya, Km. 12.5, Simpang Panam,
Pekanbaru 28293, Indonesia.

email: aan_fish(@yahoo.com

A rimoto

Graduate School of Marine Science and Technology, Tokyo
University of Marine Science and Technology, Tokyo
1088477, Japan.

Received: March 23, 2020 = Accepted: April 06, 2020 = Published Online: April 21, 2020

Abstract The purpose of this study is to know the effect of
temperature on fish muscle contraction of jack mackerel
(Trachurus jcmvicus], which muscle contraction will
determine the tail beat frequency and maximum swimming
speed. The maximum swimmira speed of was evaluated
according to the measurement of the muscle contraction time
with electric stimuli of 2-7 V, 50 ms. Fish were separated into
fma;roups for temperature acclimation at 10, 15, 18 and 22
°C to reflect typical changes in al water temperature in
Japan. Results showed that the swimming speed of the fish
was positivclme]ated to the tail-beat frequency at all
temperatures. The muscle contraction time was also affected
by the acclimated temperature, which longer at the lower
temperature than higher ones. Mean contraction time (Tm)
was45.1 msat 10°C, 32.7 ms at 15°C, 32.9ms at 18 °C, and
31.9 ms at 22 °C, respectively. The mean of maximum tail-
beat frequency (Fmax) obtained from Fmax = % Tm was 11.4
Hz at 10 °C, 15.8 Hz at 15 °C, 16,4 Hz at 18 °C, and 16.6 Hz
at 22 °C. These were used to estimate the maximum swimming
speed (Umax) at each temperafglg. resulting in 9.45 FL s at
10°C, 13.5 FLmat 15°C, 140 FL 5! 18 °C, and 14.2 FL s
at 22 °C. The seasonal temperature effects on the swimming
performance of T. japonicus, which lower water temperature
in the winter made low swimming performance.

words: muscle contraction time, swimming performance,
tail beat frequency

Introduction

Swimming activity is an important physiological
process for fish survival and plays an important role in
swimming behavior, swimming performance (Nofrizal et al
2009), food capture, predator avoidance, and reproductive
behavior (Webb 1984). It is required for the development of
fishing methods and technology or sustainable fisheries
management (Nofrizal and Ahmad 2015; Parrish 1999,

Wardle
capability and performance of fish are strongly influenced by
1978; Lee et al 2003). Water
temperature also has significant effects on nvimming

1993). Previous studies show that swimming
temperature  (Beaamish

endurance, swimming speed, heartbeat activities (Nofrizal et
al 2009; Riyanto and Ari1n0m2014; Nofrizal and Ahmad
2015), oxygen consumption (l—nskin and Steffensen 1998),
metabolic rate (Lee et al 2003), muscle contractility (Rome et
al 1990; Yanase et al 2007), and swimming performance and
impact on the mortality and stress of the trawl fishing
operations (Chopin and Arimoto 1995).

Considering the effect of temperature, several related
studies have been done to find out the effect toward specific
species. Firstly, an investigation conducted by Nofrizal et al
(2009) explored how water temperature influences the
swimming activities of jack mackerel (Trachurus japonicus).
The result pointed out tham'imming endurance rises with the
increasing temperature (Nofrizal et al 2009: Nofrizal and
Arimoto 25])‘ Secondly, Woohead (1964) found the
swimming inability of sea Solea vulgaris to avoid trawl
fishing process at lower temperatures in cold waters. At the
nit, a study to Walleye pollock Theagra chalcogramma
showed that the fish is inactive and unable to swim at 2 °C
during a towing process of the trawl (Inoue et al 1993). Those
findings bring to a notion that swimming performance of the
species including its swimming speed and swimming
endurance w@ﬁl uenced by the temperature.

The relationship between swimming speed and
endurance can be considered for making decisions on fishing
operations and methods, and managing flow velocity in
running-water aquaculture systems (Nofrizal and Ahmad
2015). Furthermore, n maximum swimming speed is
important information for determining the towing speed of
fishing gear such as in trawl and purse seine fishing operation.
Thus, the information on how the maximum swimming speed
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is affected by water temperature is required for determining
the appropriate fishing methods and operations.

Unlike the previous studies which usemG as the tool
for monitoring swimming performance of th ecies
(Nofrizal et al 2009), this current study investigated the effect
of temperature toward swimming speed of jack mackerel
through muscle contraction monitoring. Regarding the
afm‘ctantioned explanations, therefore the hypothesis of this
study is that the maximum swimming speed of fish is affected
by muscle contraction, which in tun will affect tffnaximum
swimming speed. Hence, thisnlper focuses on the effect of
variable water temperature on the maximum swimming speed,
as estimated by the minimum muscle contraction time.

Materials and Methods
Experimental Fish

ut 300 jack mackerels (18.29 + 0.63 cm fork
length) were obtamed from the fish cage in Numazu Bay,
Shizuoka Prefecm, Japan (35°06'0.00" N, 138°52'0.01" E)
and transported to the Fish Behavior Laboratory of Tokyo
University of Marine Science and Technology. They were
seasonally separated in four groups and acclimated at different
water temperatures (10, 15, 18 and 22 °C) for over a week. The
fish group of 10 °C was obtained in winter, December to
February. The group of 15 and 18 °C was collected in spring
and autumn, March to May and September to November,

Video display

90 cm
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Video recorder

while that of 22 °C was collected in summer, June to August.
The measurements of muscle contraction were also conducted
through water temperature adjustment to season, closely
simulating the condition as experienced by jack mackerels in
Japanese waters. The water temperature in the acclimation
tank was maintained by thermo controller (REI-SEA, TC-100,
Japan) following the seasonal climate temperature during the

indoor mcasureﬁcm of the muscle contraction time.
1
Observation of swimming speed and tail beat frequency

The tail beat frequency increase following the
swnming speed level was observed in the swimming channel
of a ﬂunntank (West Japan Fluid Engineering Laboratory,
PT-70). The water temperature in the flume tank was
maintained at the desired temperature in each fish group (10,
15, 18 and 22 °C). Each individual was randomly selected and
placed in the swimmiff§ channel and adapted for 10 minutes
to low flow speed (12.4 cmu conditions. The tail beat
frequency was recorded using a video camera (Sony, CCD-
TRV 96) and video recorder (Sony, EVO 9720) during
swimming exercise at various levels of swimming speed, i.e.
20.4,39.3, 55.4, 74.3, 93.1, 112.0, 128.1, 147.0 and 160.4 cm
s, being equal to lm.l, 3.0,4.1,5.1,6.1, 7.0, 8.0 and 8.8
FL s, respectively. The tail beat frequency of the individual
fish at each swimming speed was counted at the slow-motion
mode of the video timer (For-A, VTG-55D) (Figure 1).

Video timer

R —

EE-

=

240 cm

Figure 1 Experimental scheme for tail beat frequency observation at various swimming speed levels.

Measurement of muscle contraction time

Muscle contraction times were measured using a pair
of needles punctured at dorsal muscle of fish body (Figure 2).
A needle was connected to the strain gages (KYOWA, Type
KFWS-@N-120-CI-11L3M2R) to detect the
contraction when the electric stimuli were given 2-7 V, 50 ms.

muscle

The muscle of fish body dissected and put on the plate and
punctured by a pair needle of the strain gages. The strain gages
were connected to the strain-amplifier (DPM-110B). Another
needle was connected to the electric stimulator (Nihon-
kohden, SEN-2201) to give electric stimuli to the fish muscle.
Both circuits were connected to the oscilloscope (IWATSU,
DS-5102) for monitoring the stimuli interval between the
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given electric stimuli and the muscle contraction on the
oscilloscope display. The thermo-controller (TK 200, Takara
Industrial Cooperation) maintains the water media in the
aquarium during the measurement of muscle contraction time
at a designated temperature, or given temperature (Figure 2).

Data analysis

Minimum muscle contraction time (Tm) data at given
temperatures yield maximum tail frequency (Fmagfghrough
an equation as Fmax = 1/2 Tm (Wardle 1975). The maximum
swimminnpead (Umax) was estimated by a linear regression
between tail beat frequency (F) and maximum swimming
speed (U, FL s7') at each temperature, Umax = a + b F. One-
way ANOVA and AZRFOVA by SPSS-IBM version 20 were
used to compare the effect of temperature on muscle

Strain gages stand

contraction time, tail beat frequency and to estimate the
maximum swimming speed.

Results
Tail beat frequency monitoring

Figure 3 shows that swimming speed is posirivc]m
related to tail beat frequency. The water temperature was a
significant effect (ANCOVA, m:- 0.05) on the tail beat
frequency and swimming. The tail beat frequency increased
more than 4 Hz at the swimming speed more than 3 FL s and
reached more thfej | Hz at the swimming speed more than 9
FL s' at each water temperature. The tail beat frequency
dramatically increased following swimming speed levels.
Higher tail beat frequency is making faster swimming speed.

Electric stimnlator
(Nihon-Kohden. SEN-2201)

:OEH.. .e

Stram gages
(KYOWA, Type
KFWS-IN-120-C1-
HLIM2IR)

Water media

and aquariam >
v Fish muscle

-
cae WO @

X
-s

Thermo-controller. TK 200,
Takara Industrial Cooperation

Osellloscope
(IWATSU, DS-5102))

Strain=-Amplifier
(DPM-110B)

Figure 2 The scheme of muscle contraction time measurement at the water temperature of 10, 15, 18 and 22 °C.
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Figure 3 Relationship between tail beat frequency (F) and swimming speed (U, FL s°). The circle mark was 10°C (n = 68), U, FL 5= 0.86

(H=z) - 0.57, R*=0.92. Rectangular mark was 15 °C (n=68), U, FL s =0.86 (Hz)

51 =097 (Hz2)
regression for 10°C, solid line for 15°C and broken line for 22 °C.

1.18, R* = 0.94, and diamond mark was 22 °C (n = 63), U, FL s = 0.92 (Hz)

1.39, R* =0.93. Triangle mark was18 °C (n=57), U, FL
1.28, R* = 0.90. The dot line was linear
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Effect of temperature on muscle contraction

Minimum muscle contraction time was longer at 10 °C
than at higher temperatures, with values being stable at and
above 15 °C (Figure 4, mean + 1SD, min. — max.: 45.1 £ 7.3
ms, 36.7 - 57.5msat 10°C; 32.7+ 6.5 ms, 22.7 - 43.3 Hz at
15°C;32.9 £ 6.8 ms 23.0 -383 msat 18 °C; 31.9 £ 7.6 ms,

22.7—47.0 at 22 °C).

10

Tail beat frequency at various temperatures
13

The estimation of tail beat frequency was based on the
minimum muscle contraction time of jack mackerel. Faster tail
beat frequency is required for faster muscle contraction.
Figure 5 shows that the tail beat frequency of jack mackerel
was significantly lower (One-way ANOVA, P< 0.05) ata low

=
w

temperature than that at a higher temperature. The tail beat
frequency was 11.4 + 1.7 Hz at 10 °C. The highest tail beat
frequency at 10 °C, could reach 13.6 Hz and the lowest is 8.7
Hz. At 15 °C, the tail beat frequency was 15.8 = 3.3 Hz in
average, and as the maximum was 22.1 Hz and minimum was
11.5 Hz. The average tail beat frequency at 18 °C was 16.4 +
3.9 Hz, It offld reach 21.7 Hz as highest and 13.0 Hz as
lowest. The tail beat frequency was 16.6 + 3.6 Hz at 22 °C,
and the maximum could reach was 22.1 Hz and the minimum
was 10.6 Hz. However, it did not significantly change (P >
0.05) at higher temperature. The range of tail beat frequency
for each sample at low water temperature (10 °C) was not
diverse compared to the range of tail beat at higher
temperatures (18 and 22 °C) (Figure 5).
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Figure 4 Minimum muscle contraction time (7im) at various water temperatures. The circle mark was 10 °C (n = 7), rectangular mark was 15
°C (n =9), triangle mark was 18 °C (n = 6) and diamond mark was 22 °C (n = 8).
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Figure 5 Calculation ol‘gbe_at frequency (F) activities by F'= 1/2 Tim at various water temperatures. The circle mark was 10 °C (n = 7),
rectangular mark was 15 °C (n = 9), triangle mark was 18 °C (n = 6) and diamond mark was 22 °C (n = 8).
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Estimation of maximum swimming speed at various
temperatures

According to the tail beat frequency (Figure 3), the
maximum swimming speed could be extrapolated from linear
regression equation in Figure 3. Maximum swimming speed
Bes higher at higher temperatures (15, 18 and 22 °C) than that
at 10 °C. The mean estimated maximum swimming speed was
9.45 + 1.64 FL s" 10 °C, it could reach 15.3 FL s as
maximum and 10.3 FL s' as minimum. The maximum
swimming speed was increased to 13.5 £+ 3.1 at 15 °C. The
maximum swimming speed 23.9 FL 5™ as maximum and 13.2
FL s as minimum at this temperature. The maximum
swimming speed continuously increases as14.0+ 3.6 FL s at
18 °C, it was reached 23.6 as maximum and 14.7 as minimum.
At 22 °C, the maximum swimming speed was increased 14.2
+ 34 FL s at 22 °C, the maximum swimming speed at this
temperature could reach 23.9 FL ™' as maximum and 12.3 as
minimum (Figure 6). The deviation of maximum swimming
speed of each individual was higher at higher temperatures
than that at lowest temperature of 10 °C.

Discussion

The tail beat frequency of jack mackerel determines its
swimming speed. Higher tail beat fre@fency leads to faster
swimming speed. Figure 3 showed that the tail beat frequency
at lower temperature (10 °C) was significantly different with

20 r

Estimation of maximum swimming speed (U, FL s-1)
T

other numbers of tail beat frequency athigher temperature (15,
18, 22 °C). In fact, at higher temperature, the numbers of tail
beat frequency were not significantly different to each other
even it is possible that the water viscosity at 15— 22 °C is
similar. Thus, similar tail beat frequency is required to
produce water motion to impel their body when swimming at
each water temperature. Contrastively, various numbers of tail
beat frequency are needed for the swimming speed of 2 FL s-
1 to 9.4 FL s-1. Therefore, it can be said that the water
temperature did not nfluence the tail beat frequency of T
Japonicus. The result of this study is consistent with
previously published work that the water temperature has a
relatively small effect on the tail beat frequency (Rome et al.
1992). However, other studies show that temperaae affects
swimming performance (Beamish 1978; MacNutt et al. 2004;
Keen and Farrell 1994; Claireaux et al 2006), swimming cost
(Johnston and Temple 2002), maximum swimming speed,
muscle shortening, muscle maximum strength (Rome 1990)
and swimming endurance of fish (Nofrizal et al 2009).
Nonetheless, the different results may come out due to other
factors that possibly contribute to the increase of swimming
speed were not considered further in this study such as tail
amplitude. Although some studies (Hunter 1971) showed that
tail amplitude did not change with speed but Palstra and Planas
(2013) mentioned in their literature about swimming
physiology of the fish that there are some cases showing
increases of tail amplitude in higher swimming speed.

10 1= 18
Temperature (“C)

Figure 6 Estimation of maximum swimming speed (U, FL s™') at the various water temperatures. The circle mark was 10°C (n =7), rectangular
mark was 15 °C (n = 9), triangle mark was 18 °C (n = 6) and diamond mark was 22 °C (n = 8).

27
Funhcmmrt:,g beat frequency is strongly influenced
by the speed of the muscle contraction. Based on the
observations, the speed of muscle contraction was slower at
lower temperatures than at higher temperatures. The ambient
water temperggre influences the fish’s muscle contrggion for
estimation of the relatively high speed of little tunny (Brill and

Dizon 1979; Wardle 1975). The increasing water

1
temperatures have shown the improvement of the gusc]c
contractility (Rome et al 1990; Yanase et al 2007). It could
result from that fish muscles experience stiffness at lower
temperatures. According to Dickson et al (2002), the
swimming activities and the oxidative muscle fiber of chub
mackerel (Scomber japonicus) are slow at low temperature. In
case at other species show that low water temperature it
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increases the oxidative myotom@ignuscles of fish, such as in
carp (Cyprinus carpio) (Sidel 1980), striped bass (Morone
saxatilis) (Jones and Sidel 1982), and rainbow trout
(Oncorhynchus mykiss) (Taylor et al 1996). The muscle fiber
characteristic of scup (Stenotomus chrysops) changes during
the acclimation period at 18 °C to increase the mming
efficiency (Swank and Rome 2001). Meanwhile, at the present
study found that the muscle contraction of jack mackerel is
more stable at warmer temperature 15, 18 and 22 °C). It
reflects that 18 °C is optimum temperature to support the
biological activities of jack mackerel, especially the fish
swimming activity. This also indicates that optimum muscle
contraction of jack mackerel happens at 18 °C.

In this study, the estimation of maximum tail beat
frequency is based on the minimum muscle contraction data
of each individual at different temperatures. The speed of the
tail flicker is lower at lower temperatures than at higffr
temperatures. Slower muscle contraction results in a lower tail
beat frequency. Hence, the maximum swimming speed of jack
mackerel was extrapolated from the estimation of tail beat
frequency data (see Figure 5) using thtﬁlcar regression
equation (see Figure 3). The result shows that the maxmlm
swimming speed of the jack mackerel was slower at lower
than at higher temperatures. Fuiman and Batty (1997) reported
that the high water temperature could intensify the fish’s
movement and the fish shows active swimming at the higher
temperature. Swimming endurance of jack gffckerel increases
at higher temperatures at 15, 18 and 22 °C (Riyanto et al 2014;
Nofrizal and Arimoto 2011; nnase et al 2007; Riyanto and
Arimoto 2014). For example, Riyanto et al. (2014) found that
the swimming speed of jack mackerel improved from 10.9 FL
s at 10 °C to 14.2 FL s at 22 °C. A similar finding by
Nofrizal and Arimoto (2011) also confirmed that jack
mackerel showed a berrtn;wimming performance at higher
temperature in which the swimming speed levels of 1.09-9.12
FLs" at 15 and 22 °C.

However, previous studies indicate that in many fish
species, the swimming speed and endurance decrease at low
temperatures, and increase to the peak at optimal temperatures
and then decrease when the temperature approaches the high
temperature limit (Randall and Brauner 1991; Myrick and
Cech 2000; Ojanguren and 2000; Lee et al 2003).

The present study shows that the deviation of
maximum swimming speeds of each individual sample was
relatively small at lower temperature (see Figure 6), while at
higher temperatures, Trachurus japonicus had more active
and faster swimming performance, 16.49 FL s on average or
It is indicated by higher
standard deviation at each higher water temperature (see
Figure 6). The estimation of maximum swimming speed of

3.01 m s especially at 18 °C.

jack mackerel is faster than that of blue marlin (Makaira
nigricans) whose maximum swimming speed rarely exceeds

2
2‘0055", with a maximum of 2.25 m s (Block et al 1992).
However, T. japoﬂ:us is still considered to be slower than
other predator fishes, BJsuch as sailfish  (Istiophorus
platypterus), 8.30 = 1.40 m s, little tunny 5.60 = 0.20 m 5™,
dorado. 4.00 £ 0.9 m S‘Svendsen et al 2016), and black
marlin (Makaira indica), 30 m s-1 (Lane 1941). The standard
deviation of swimming speed of jack mackerels was higher at
each individual at 18 °C (Figure 6). This proves that optimum
temperatures could make the fish swim more active.
Maximum speeds in animals are important in ecological role,
especially in relation with the predatory-prey interaction
(Wardle 1975; Domenici 2001; Wilson et al 2013). According

ay and Butler (2005), the seasonal water temperatures
Wt the swimmmg abilities of fish. This work indicates that
water temperature influences the fish maximum swimming
speed. Thtﬂwimming speed decreases when temperature
decreases (Hammer 1995; Clsireaux et al 2000; Lee et al
2003gRfFrangue ct al 2008; Zeng et al 2009; Yan et al 2012;
Lee et al 2014). This study concluded that the muscle
contraction of T. japonicus slowed down in the low
temperature. This will cause the fish's tail beat frequency also
decline and eventually reduce the fish's maximum swimming
speed. In winter, water temperature will certainly fall
following the seasonal temperature. This certainly affects fish
swimming activity, especially in the fishing process during the
winter. In this condition, the fish will be easily caught, because
their swimming ability is slower for the fishing gear avoidance
during the capture process and predator-prey ilnophic level
system. Therefore, the fish has great opportunity to escape and
avoid the fishing gear during capture process in spring,
autumn and summer.

Conclusions

Ambient water temperature affects the maximum
swimming speed of fish. The maximum swimming speed is
faster in higher water temperatures (15, 18 and 22 °C) l‘l‘l'dlm
lower temperatures (10 °C). In lower waters temperatures, the
maximum swimming speed of the fish decreases, this is
because fish muscle contractions were stiffer and slower in the
lower waters. Slm\m fish muscle contraction was indicated
by the low average of the muscle contraction time of fish. The
low average of muscle contraction time of these fishes affects
their tail beat frequency activities. Lower fish muscle
contraction times are resulting in a slow the tail beat
frequency. Conversely, at a more wamng temperature, the
fish muscle contraction time is faster; as a result, the tail l:nt
frequency was increased. The tail beat frequency affects the
maximum swimming speed. The faster the tmaeat frequency
1s making faster the maximum swimming speed of the Fa
Otherwise, the slower tail beat frequency, the lower the
maximum swimming speed of the fish.
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